a^2+25^2=50^2

Simple and best practice solution for a^2+25^2=50^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+25^2=50^2 equation:



a^2+25^2=50^2
We move all terms to the left:
a^2+25^2-(50^2)=0
We add all the numbers together, and all the variables
a^2-1875=0
a = 1; b = 0; c = -1875;
Δ = b2-4ac
Δ = 02-4·1·(-1875)
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{3}}{2*1}=\frac{0-50\sqrt{3}}{2} =-\frac{50\sqrt{3}}{2} =-25\sqrt{3} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{3}}{2*1}=\frac{0+50\sqrt{3}}{2} =\frac{50\sqrt{3}}{2} =25\sqrt{3} $

See similar equations:

| 2b+4=-19-9b | | 3x+23+4=180 | | 3u-(-5u)-(-11u)-(-8u)+(-11u)=-16 | | 2(2/3+y)=41/4 | | (t+36)+7t+48=180 | | 2b+4=-18+-4 | | 3(6x+7)=147 | | (s-28)+2s+31=180 | | 27+6.00=8.25x | | 7×x=870+x | | 7/x-3=11 | | 4x/5-8=3 | | -6w+28=-8(w-6) | | 7×x=x+870 | | 7x+23+144=180 | | 1/3r+7=-4 | | -4b+21=11-3b | | -6/5=1/2x+1-x | | 2(6d+3)=18-13-9d | | 40=-7x-9 | | 180=2x-20 | | -15.8z+19.93=-19.51-19z-9.84 | | x=7x-870 | | 1/6(0.3x-12)+0.05x=-1/4(7-0.4x) | | (2/3s)-(5/6s)+(1/2)=-(3/2) | | x/6=-2.1 | | 6x0.2x=7.44 | | -15-4x=25 | | (3x+2x)+100=180 | | 4x+6=10x+10 | | -8x-147=70-x | | -8=x/10-6 |

Equations solver categories